Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Journal of the Cameroon Academy of Sciences ; 18(Suppl):520-529, 2022.
Artículo en Francés | CAB Abstracts | ID: covidwho-2322929

RESUMEN

The proteins (37%), carbohydrates (24.4%) and lipids (30.1%) contents of S. platensis from Nomayos provide the body with its structural and energy needs for about 518.8 Kcal per 100g of spirulina. Polyphenols (56.4 mEq. QE / g ES.), flavanols (13.2 mEq. QE / g ES.) flavonoids (21.2 mEq. QE / g ES.), carotenoids (3, 8%) and phycocyanin (16.15%) is responsible of its antioxidant capacities (7.5 + 0.33 mg eq. Vit C/g ES) and for a significant decrease in malondialdehyde MDA (< 0.001) concentration. Zinc (25 mG/Kg), Iron (256 mG/Kg), Selenium (1.24 mG/Kg), Manganese (23mG/Kg) and Copper (28.95 mG/Kg) reinforce this antioxidant power because they are cofactors of enzymes (Superoxide dismutase, Peroxidase, Catalase) which ensure the fight against free radicals. The presence of phycocyanin is an asset for the anti-inflammatory action. The significant decrease in IL-8 (p < 0.001) and TNF alpha (p < 0.04) levels confirms this property. On the other hand, the nonsignificant increase in Il-6 (1.56 to 2.18 pg/m;p > 0.05) would be partly responsible for the rise in CD4 levels (p < 0.001) and the reduction in viral load in immune deficiency patients (p = 0.000) supplemented with spirulina. In conclusion, S. platensis from Nomayos by its antioxidant, anti-inflammatory and immuno-stimulatory properties would be a good supplement food for subjects at risk of developing severe forms of COVID-19.

2.
Current Orthopaedic Practice ; 34(3):103-105, 2023.
Artículo en Inglés | CINAHL | ID: covidwho-2304176

RESUMEN

Background: The COVID-19 pandemic significantly impacted elective surgical volume across the country;however, its effect on urgent transfers is unclear. This study sought to understand the impact of COVID-19 on transfers for hand surgery evaluation at a single quaternary referral center during the initial 3 mo of state mandated restrictions. Methods: A retrospective analysis was performed comparing the rate and character of transfers for hand surgery evaluation from March to June of 2020 to a temporally matched cohort averaged across 2018 and 2019. The primary outcome of this study was transfer frequency, with secondary outcomes of treatment rendered and type of disposition. Results: The rate of transfer between emergency departments for hand surgery evaluation was not statistically different from before to during COVID (ED-to-ED transfer rate: 4.3% and 5.1% respectively, P =0.68). Patient demographics were similar, with no difference in age (pre-COVID-19 mean 48.6 yr vs. intra-COVID-19 mean 53.2 yr, P =0.31) or type of insurance (P =0.99). Regarding reason for transfer, both cohorts were similar in the number of transfers for trauma versus infection (pre-COVID-19 infection: 11 trauma: 20.5 vs. intra-COVID-19 infection: 4 trauma: 17 P =0.99). We observed similar rates of transfers requiring procedural intervention (pre-COVID-19 69.8% vs. intra-COVID-19 57.1% P =0.19). Lastly, there was no difference in admission patterns, with pre-COVID-19 rates (71.4%) similar to those during COVID-19 (52%) P =0.15. Conclusions: Despite the many changes to healthcare in the US during the COVID-19 pandemic, the practice of transferring for evaluation to a Level 1 hand surgery center was similar to pre-pandemic years. Level VI Evidence: Presenting a single descriptive study.

3.
Data ; 7(11):164, 2022.
Artículo en Inglés | MDPI | ID: covidwho-2116079

RESUMEN

Although various vaccines are now commercially available, they have not been able to stop the spread of COVID-19 infection completely. An excellent strategy to get safe, effective, and affordable COVID-19 treatments quickly is to repurpose drugs that are already approved for other diseases. The process of developing an accurate and standardized drug repurposing dataset requires considerable resources and expertise due to numerous commercially available drugs that could be potentially used to address the SARS-CoV-2 infection. To address this bottleneck, we created the CoviRx.org platform. CoviRx is a user-friendly interface that allows analysis and filtering of large quantities of data, which is onerous to curate manually for COVID-19 drug repurposing. Through CoviRx, the curated data have been made open source to help combat the ongoing pandemic and encourage users to submit their findings on the drugs they have evaluated, in a uniform format that can be validated and checked for integrity by authenticated volunteers. This article discusses the various features of CoviRx, its design principles, and how its functionality is independent of the data it displays. Thus, in the future, this platform can be extended to include any other disease beyond COVID-19.

4.
Viruses ; 14(11)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: covidwho-2099851

RESUMEN

The repurposing of licenced drugs for use against COVID-19 is one of the most rapid ways to develop new and alternative therapeutic options to manage the ongoing pandemic. Given circa 7817 licenced compounds available from Compounds Australia that can be screened, this paper demonstrates the utility of commercially available ex vivo/3D airway and alveolar tissue models. These models are a closer representation of in vivo studies than in vitro models, but retain the benefits of rapid in vitro screening for drug efficacy. We demonstrate that several existing drugs appear to show anti-SARS-CoV-2 activity against both SARS-CoV-2 Delta and Omicron Variants of Concern in the airway model. In particular, fluvoxamine, as well as aprepitant, everolimus, and sirolimus, has virus reduction efficacy comparable to the current standard of care (remdesivir, molnupiravir, nirmatrelvir). Whilst these results are encouraging, further testing and efficacy studies are required before clinical use can be considered.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Pulmón , Antivirales/farmacología , Antivirales/uso terapéutico
5.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: covidwho-2066139

RESUMEN

SARS-CoV-2 is the cause of the COVID-19 pandemic which has claimed more than 6.5 million lives worldwide, devastating the economy and overwhelming healthcare systems globally. The development of new drug molecules and vaccines has played a critical role in managing the pandemic; however, new variants of concern still pose a significant threat as the current vaccines cannot prevent all infections. This situation calls for the collaboration of biomedical scientists and healthcare workers across the world. Repurposing approved drugs is an effective way of fast-tracking new treatments for recently emerged diseases. To this end, we have assembled and curated a database consisting of 7817 compounds from the Compounds Australia Open Drug collection. We developed a set of eight filters based on indicators of efficacy and safety that were applied sequentially to down-select drugs that showed promise for drug repurposing efforts against SARS-CoV-2. Considerable effort was made to evaluate approximately 14,000 assay data points for SARS-CoV-2 FDA/TGA-approved drugs and provide an average activity score for 3539 compounds. The filtering process identified 12 FDA-approved molecules with established safety profiles that have plausible mechanisms for treating COVID-19 disease. The methodology developed in our study provides a template for prioritising drug candidates that can be repurposed for the safe, efficacious, and cost-effective treatment of COVID-19, long COVID, or any other future disease. We present our database in an easy-to-use interactive interface (CoviRx that was also developed to enable the scientific community to access to the data of over 7000 potential drugs and to implement alternative prioritisation and down-selection strategies.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19/complicaciones , Reposicionamiento de Medicamentos , Humanos , Pandemias , SARS-CoV-2 , Síndrome Post Agudo de COVID-19
6.
Mol Psychiatry ; 27(10): 3939-3950, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: covidwho-2050317

RESUMEN

Neuropsychiatric manifestations are common in both the acute and post-acute phase of SARS-CoV-2 infection, but the mechanisms of these effects are unknown. In a newly established brain organoid model with innately developing microglia, we demonstrate that SARS-CoV-2 infection initiate neuronal cell death and cause a loss of post-synaptic termini. Despite limited neurotropism and a decelerating viral replication, we observe a threefold increase in microglial engulfment of postsynaptic termini after SARS-CoV-2 exposure. We define the microglial responses to SARS-CoV-2 infection by single cell transcriptomic profiling and observe an upregulation of interferon-responsive genes as well as genes promoting migration and synapse engulfment. To a large extent, SARS-CoV-2 exposed microglia adopt a transcriptomic profile overlapping with neurodegenerative disorders that display an early synapse loss as well as an increased incident risk after a SARS-CoV-2 infection. Our results reveal that brain organoids infected with SARS-CoV-2 display disruption in circuit integrity via microglia-mediated synapse elimination and identifies a potential novel mechanism contributing to cognitive impairments in patients recovering from COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Organoides , Microglía , Encéfalo , Terminales Presinápticos
7.
preprints.org; 2022.
Preprint en Inglés | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202209.0323.v1

RESUMEN

Although various vaccines are now commercially available, they have not been able to stop the spread of COVID-19 infection completely. An excellent strategy to quickly get safe, effective, and affordable COVID-19 treatment is to repurpose drugs that are already approved for other diseases as adjuvants along with the ongoing vaccine regime. The process of developing an accurate and standardized drug repurposing dataset requires a considerable level of resources and expertise due to the commercial availability of an extensive array of drugs that could be potentially used to address the SARS-CoV-2 infection. To address this bottleneck, we created the CoviRx platform. CoviRx is a user-friendly interface that provides access to the data, which is manually curated for COVID-19 drug repurposing data. Through CoviRx, the data curated has been made open-source to help advance drug repurposing research. CoviRx also encourages users to submit their findings after thoroughly validating the data, followed by merging it by enforcing uniformity and integ-rity-preserving constraints. This article discusses the various features of CoviRx and its design principles. CoviRx has been designed so that its functionality is independent of the data it dis-plays. Thus, in the future, this platform can be extended to include any other disease X beyond COVID-19. CoviRx can be accessed at www.covirx.org.


Asunto(s)
COVID-19
8.
preprints.org; 2022.
Preprint en Inglés | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202209.0310.v1

RESUMEN

SARS-CoV-2, is the cause of the COVID-19 pandemic which has claimed more than six million lives worldwide, devastating the economy and overwhelming healthcare systems globally. The development of new drug molecules and vaccines has played a critical role in managing the pandemic; however, new variants of concern still pose a significant threat as the current vaccines cannot prevent all infections. This situation calls for the collaboration of biomedical scientists and healthcare workers across the world. Repurposing approved drugs is an effective way of fast-tracking new treatments for recently emerged diseases. To this end, we have assembled and curated a database consisting of 7817 compounds from the Compounds Australia Open Drug collection. We developed a set of eight filters based on indicators of efficacy and safety that were applied sequentially to down-select drugs that showed promise for drug repurposing efforts against SARS-CoV-2. Considerable effort was made to evaluate approximately 14000 assay data points for SARS-CoV-2 FDA/TGA-approved drugs and provide an average activity score for 3539 compounds. The filtering process identified 12 FDA approved molecules with established safety profiles that have a plausible mechanism for treating COVID-19 disease. The methodology developed in our study provides a template for prioritising repurposable drug candidates that are safe, efficacious, and cost-effective for the treatment of COVID-19, long COVID, or any other future disease. We present our database in an easy-to-use interactive interface (CoviRx, https://www.covirx.org/) that was also developed to enable scientific community to access to the data of over 7000 potential drugs and to implement alternative prioritisation and down-selection strategies.


Asunto(s)
COVID-19
9.
preprints.org; 2022.
Preprint en Inglés | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202209.0288.v1

RESUMEN

The repurposing of licenced drugs for use against COVID-19 is one of the most rapid ways to develop new and alternative therapeutic options to manage the ongoing pandemic. Given the approximately 8,000 licenced compounds available from Compounds Australia that can be screened, this paper demonstrates the utility of commercially-available ex vivo/3D airway and alveolar tissue models. These models are a closer representation of in vivo studies compared to in vitro models, but retain the benefits of rapid in vitro screening for drug efficacy. We demonstrate that several existing drugs appear to show anti-SARS-CoV-2 activity against both Delta and Omicron Variants of Concern in the airway model. In particular, fluvoxamine, as well as aprepitant, everolimus, and sirolimus have virus reduction efficacy comparable to the current standard of care (remdesivir, molnupiravir, nirmatrelvir). Whilst these results are encouraging, further testing and efficacy studies are required before clinical use can be considered.


Asunto(s)
COVID-19
10.
Pharmacol Rev ; 74(1): 141-206, 2022 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1978532

RESUMEN

The number of successful drug development projects has been stagnant for decades despite major breakthroughs in chemistry, molecular biology, and genetics. Unreliable target identification and poor translatability of preclinical models have been identified as major causes of failure. To improve predictions of clinical efficacy and safety, interest has shifted to three-dimensional culture methods in which human cells can retain many physiologically and functionally relevant phenotypes for extended periods of time. Here, we review the state of the art of available organotypic culture techniques and critically review emerging models of human tissues with key importance for pharmacokinetics, pharmacodynamics, and toxicity. In addition, developments in bioprinting and microfluidic multiorgan cultures to emulate systemic drug disposition are summarized. We close by highlighting important trends regarding the fabrication of organotypic culture platforms and the choice of platform material to limit drug absorption and polymer leaching while supporting the phenotypic maintenance of cultured cells and allowing for scalable device fabrication. We conclude that organotypic and microphysiological human tissue models constitute promising systems to promote drug discovery and development by facilitating drug target identification and improving the preclinical evaluation of drug toxicity and pharmacokinetics. There is, however, a critical need for further validation, benchmarking, and consolidation efforts ideally conducted in intersectoral multicenter settings to accelerate acceptance of these novel models as reliable tools for translational pharmacology and toxicology. SIGNIFICANCE STATEMENT: Organotypic and microphysiological culture of human cells has emerged as a promising tool for preclinical drug discovery and development that might be able to narrow the translation gap. This review discusses recent technological and methodological advancements and the use of these systems for hit discovery and the evaluation of toxicity, clearance, and absorption of lead compounds.


Asunto(s)
Descubrimiento de Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Desarrollo de Medicamentos , Evaluación Preclínica de Medicamentos , Humanos , Estudios Multicéntricos como Asunto
11.
Br J Clin Pharmacol ; 87(9): 3425-3438, 2021 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1494607

RESUMEN

AIMS: We propose the use of in silico mathematical models to provide insights that optimize therapeutic interventions designed to effectively treat respiratory infection during a pandemic. A modelling and simulation framework is provided using SARS-CoV-2 as an example, considering applications for both treatment and prophylaxis. METHODS: A target cell-limited model was used to quantify the viral infection dynamics of SARS-CoV-2 in a pooled population of 105 infected patients. Parameter estimates from the resulting model were used to simulate and compare the impact of various interventions against meaningful viral load endpoints. RESULTS: Robust parameter estimates were obtained for the basic reproduction number, viral release rate and infected-cell mortality from the infection model. These estimates were informed by the largest dataset currently available for SARS-CoV-2 viral time course. The utility of this model was demonstrated using simulations, which hypothetically introduced inhibitory or stimulatory drug mechanisms at various target sites within the viral life-cycle. We show that early intervention is crucial to achieving therapeutic benefit when monotherapy is administered. In contrast, combination regimens of two or three drugs may provide improved outcomes if treatment is initiated late. The latter is relevant to SARS-CoV-2, where the period between infection and symptom onset is relatively long. CONCLUSIONS: The use of in silico models can provide viral load predictions that can rationalize therapeutic strategies against an emerging viral pathogen.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Simulación por Computador , Humanos , Pandemias , SARS-CoV-2/efectos de los fármacos , Carga Viral
12.
J Thorac Oncol ; 16(11): 1821-1839, 2021 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1492352

RESUMEN

INTRODUCTION: Coronavirus disease 2019 is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which enters host cells through the cell surface proteins ACE2 and TMPRSS2. METHODS: Using a variety of normal and malignant models and tissues from the aerodigestive and respiratory tracts, we investigated the expression and regulation of ACE2 and TMPRSS2. RESULTS: We find that ACE2 expression is restricted to a select population of epithelial cells. Notably, infection with SARS-CoV-2 in cancer cell lines, bronchial organoids, and patient nasal epithelium induces metabolic and transcriptional changes consistent with epithelial-to-mesenchymal transition (EMT), including up-regulation of ZEB1 and AXL, resulting in an increased EMT score. In addition, a transcriptional loss of genes associated with tight junction function occurs with SARS-CoV-2 infection. The SARS-CoV-2 receptor, ACE2, is repressed by EMT through the transforming growth factor-ß, ZEB1 overexpression, and onset of EGFR tyrosine kinase inhibitor resistance. This suggests a novel model of SARS-CoV-2 pathogenesis in which infected cells shift toward an increasingly mesenchymal state, associated with a loss of tight junction components with acute respiratory distress syndrome-protective effects. AXL inhibition and ZEB1 reduction, as with bemcentinib, offer a potential strategy to reverse this effect. CONCLUSIONS: These observations highlight the use of aerodigestive and, especially, lung cancer model systems in exploring the pathogenesis of SARS-CoV-2 and other respiratory viruses and offer important insights into the potential mechanisms underlying the morbidity and mortality of coronavirus disease 2019 in healthy patients and patients with cancer alike.


Asunto(s)
COVID-19 , Neoplasias Pulmonares , Bronquios , Humanos , Pulmón , Peptidil-Dipeptidasa A , SARS-CoV-2
13.
Br J Clin Pharmacol ; 87(9): 3385-3387, 2021 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1379556
14.
J Genet Eng Biotechnol ; 19(1): 104, 2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: covidwho-1317132

RESUMEN

BACKGROUND: Accessing COVID-19 vaccines is a challenge despite successful clinical trials. This burdens the COVID-19 treatment gap, thereby requiring accelerated discovery of anti-SARS-CoV-2 agents. This study explored the potential of anti-HIV reverse transcriptase (RT) phytochemicals as inhibitors of SARS-CoV-2 non-structural proteins (nsps) by targeting in silico key sites in the structures of SARS-CoV-2 nsps. One hundred four anti-HIV phytochemicals were subjected to molecular docking with nsp3, 5, 10, 12, 13, 15, and 16. Top compounds in complex with the nsps were investigated further through molecular dynamics. The drug-likeness and ADME (absorption, distribution, metabolism, and excretion) properties of the top compounds were also predicted using SwissADME. Their toxicity was likewise determined using OSIRIS Property Explorer. RESULTS: Among the top-scoring compounds, the polyphenolic functionalized natural products comprised of biflavones 1, 4, 11, 13, 14, 15; ellagitannin 9; and bisisoquinoline alkaloid 19 were multi-targeting and exhibited strongest binding affinities to at least two nsps (binding energy = - 7.7 to - 10.8 kcal/mol). The top ligands were stable in complex with their target nsps as determined by molecular dynamics. Several top-binding compounds were computationally druggable, showed good gastrointestinal absorptive property, and were also predicted to be non-toxic. CONCLUSIONS: Twenty anti-HIV RT phytochemicals showed multi-targeting inhibitory potential against SARS-CoV-2 non-structural proteins 3, 5, 10, 12, 13, 15, and 16. Our results highlight the importance of polyhydroxylated aromatic substructures for effective attachment in the binding/catalytic sites of nsps involved in post-translational mechanism pathways. As such with the nsps playing vital roles in viral pathogenesis, our findings provide inspiration for the design and discovery of novel anti-COVID-19 drug prototypes.

15.
Transl Psychiatry ; 11(1): 179, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: covidwho-1142427

RESUMEN

Microglia, the resident brain immune cells, play a critical role in normal brain development, and are impacted by the intrauterine environment, including maternal immune activation and inflammatory exposures. The COVID-19 pandemic presents a potential developmental immune challenge to the fetal brain, in the setting of maternal SARS-CoV-2 infection with its attendant potential for cytokine production and, in severe cases, cytokine storming. There is currently no biomarker or model for in utero microglial priming and function that might aid in identifying the neonates and children most vulnerable to neurodevelopmental morbidity, as microglia remain inaccessible in fetal life and after birth. This study aimed to generate patient-derived microglial-like cell models unique to each neonate from reprogrammed umbilical cord blood mononuclear cells, adapting and extending a novel methodology previously validated for adult peripheral blood mononuclear cells. We demonstrate that umbilical cord blood mononuclear cells can be used to create microglial-like cell models morphologically and functionally similar to microglia observed in vivo. We illustrate the application of this approach by generating microglia from cells exposed and unexposed to maternal SARS-CoV-2 infection. Our ability to create personalized neonatal models of fetal brain immune programming enables non-invasive insights into fetal brain development and potential childhood neurodevelopmental vulnerabilities for a range of maternal exposures, including COVID-19.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/inmunología , COVID-19/inmunología , Reprogramación Celular , Sangre Fetal/inmunología , Células Madre Pluripotentes Inducidas , Leucocitos Mononucleares/inmunología , Microglía/inmunología , Complicaciones Infecciosas del Embarazo/inmunología , Adulto , Femenino , Humanos , Recién Nacido , Embarazo
16.
Int Forum Allergy Rhinol ; 11(7): 1041-1046, 2021 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1136915

RESUMEN

The frequent association between coronavirus disease 2019 (COVID-19) and olfactory dysfunction is creating an unprecedented demand for a treatment of the olfactory loss. Systemic corticosteroids have been considered as a therapeutic option. However, based on current literature, we call for caution using these treatments in early COVID-19-related olfactory dysfunction because: (1) evidence supporting their usefulness is weak; (2) the rate of spontaneous recovery of COVID-19-related olfactory dysfunction is high; and (3) corticosteroids have well-known potential adverse effects. We encourage randomized placebo-controlled trials investigating the efficacy of systemic steroids in this indication and strongly emphasize to initially consider smell training, which is supported by a robust evidence base and has no known side effects.


Asunto(s)
Corticoesteroides/farmacología , COVID-19 , Administración del Tratamiento Farmacológico/estadística & datos numéricos , Trastornos del Olfato , COVID-19/complicaciones , COVID-19/fisiopatología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/diagnóstico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/etiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Salud Global , Humanos , Administración del Tratamiento Farmacológico/normas , Evaluación de Necesidades , Trastornos del Olfato/tratamiento farmacológico , Trastornos del Olfato/epidemiología , Trastornos del Olfato/etiología , Mucosa Olfatoria/efectos de los fármacos , Mucosa Olfatoria/virología , Remisión Espontánea , Proyectos de Investigación , SARS-CoV-2/patogenicidad
17.
J Allergy Clin Immunol ; 147(5): 1704-1719, 2021 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1096022

RESUMEN

BACKGROUND: Respiratory tract viruses are the second most common cause of olfactory dysfunction. As we learn more about the effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with the recognition that olfactory dysfunction is a key symptom of this disease process, there is a greater need than ever for evidence-based management of postinfectious olfactory dysfunction (PIOD). OBJECTIVE: Our aim was to provide an evidence-based practical guide to the management of PIOD (including post-coronavirus 2019 cases) for both primary care practitioners and hospital specialists. METHODS: A systematic review of the treatment options available for the management of PIOD was performed. The written systematic review was then circulated among the members of the Clinical Olfactory Working Group for their perusal before roundtable expert discussion of the treatment options. The group also undertook a survey to determine their current clinical practice with regard to treatment of PIOD. RESULTS: The search resulted in 467 citations, of which 107 articles were fully reviewed and analyzed for eligibility; 40 citations fulfilled the inclusion criteria, 11 of which were randomized controlled trials. In total, 15 of the articles specifically looked at PIOD whereas the other 25 included other etiologies for olfactory dysfunction. CONCLUSIONS: The Clinical Olfactory Working Group members made an overwhelming recommendation for olfactory training; none recommended monocycline antibiotics. The diagnostic role of oral steroids was discussed; some group members were in favor of vitamin A drops. Further research is needed to confirm the place of other therapeutic options.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Trastornos del Olfato , SARS-CoV-2/inmunología , Esteroides/uso terapéutico , Vitamina A/uso terapéutico , COVID-19/complicaciones , COVID-19/epidemiología , COVID-19/inmunología , Consenso , Medicina Basada en la Evidencia , Trastornos del Olfato/tratamiento farmacológico , Trastornos del Olfato/epidemiología , Trastornos del Olfato/etiología , Trastornos del Olfato/inmunología , Guías de Práctica Clínica como Asunto
18.
Br J Clin Pharmacol ; 87(9): 3388-3397, 2021 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1060954

RESUMEN

During a pandemic caused by a novel pathogen (NP), drug repurposing offers the potential of a rapid treatment response via a repurposed drug (RD) while more targeted treatments are developed. Five steps of model-informed drug repurposing (MIDR) are discussed: (i) utilize RD product label and in vitro NP data to determine initial proof of potential, (ii) optimize potential posology using clinical pharmacokinetics (PK) considering both efficacy and safety, (iii) link events in the viral life cycle to RD PK, (iv) link RD PK to clinical and virologic outcomes, and optimize clinical trial design, and (v) assess RD treatment effects from trials using model-based meta-analysis. Activities which fall under these five steps are categorized into three stages: what can be accomplished prior to an NP emergence (preparatory stage), during the NP pandemic (responsive stage) and once the crisis has subsided (retrospective stage). MIDR allows for extraction of a greater amount of information from emerging data and integration of disparate data into actionable insight.


Asunto(s)
Reposicionamiento de Medicamentos , Pandemias , Proyectos de Investigación , Estudios Retrospectivos
19.
Chem Senses ; 462021 01 01.
Artículo en Inglés | MEDLINE | ID: covidwho-990574

RESUMEN

In a preregistered, cross-sectional study, we investigated whether olfactory loss is a reliable predictor of COVID-19 using a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n = 4148) or negative (C19-; n = 546) COVID-19 laboratory test outcome. Logistic regression models identified univariate and multivariate predictors of COVID-19 status and post-COVID-19 olfactory recovery. Both C19+ and C19- groups exhibited smell loss, but it was significantly larger in C19+ participants (mean ± SD, C19+: -82.5 ± 27.2 points; C19-: -59.8 ± 37.7). Smell loss during illness was the best predictor of COVID-19 in both univariate and multivariate models (ROC AUC = 0.72). Additional variables provide negligible model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms (e.g., fever). Olfactory recovery within 40 days of respiratory symptom onset was reported for ~50% of participants and was best predicted by time since respiratory symptom onset. We find that quantified smell loss is the best predictor of COVID-19 amongst those with symptoms of respiratory illness. To aid clinicians and contact tracers in identifying individuals with a high likelihood of having COVID-19, we propose a novel 0-10 scale to screen for recent olfactory loss, the ODoR-19. We find that numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (4 < OR < 10). Once independently validated, this tool could be deployed when viral lab tests are impractical or unavailable.


Asunto(s)
Anosmia/diagnóstico , COVID-19/diagnóstico , Adulto , Anosmia/etiología , COVID-19/complicaciones , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , SARS-CoV-2/aislamiento & purificación , Autoinforme , Olfato
20.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.10.07.329748

RESUMEN

Microglia, the resident brain immune cells, play a critical role in normal brain development, and are impacted by the intrauterine environment, including maternal immune activation and inflammatory exposures. The COVID-19 pandemic presents a potential developmental immune challenge to the fetal brain, in the setting of maternal SARS-CoV-2 infection with its attendant potential for cytokine production and, in severe cases, cytokine storming. There is currently no biomarker or model for in utero microglial priming and function that might aid in identifying the neonates and children most vulnerable to neurodevelopmental morbidity, as microglia remain inaccessible in fetal life and after birth. This study aimed to generate patient-derived microglial-like cell models unique to each neonate from reprogrammed umbilical cord blood mononuclear cells, adapting and extending a novel methodology previously validated for adult peripheral blood mononuclear cells. We demonstrate that umbilical cord blood mononuclear cells can be used to create microglial-like cell models morphologically and functionally similar to microglia observed in vivo. We illustrate the application of this approach by generating microglia from cells exposed and unexposed to maternal SARS-CoV-2 infection. Our ability to create personalized neonatal models of fetal brain immune programming enables non-invasive insights into fetal brain development and potential childhood neurodevelopmental vulnerabilities for a range of maternal exposures, including COVID-19.


Asunto(s)
COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA